
{cookiecutter.app_name}
Documentation

Release 0.10.0

{cookiecutter.author_name}

Dec 15, 2019

Contents:

1 Plugin system overview 1
1.1 Conventions . 1
1.2 Hooks . 1

2 Implementing hooks and writing internal plugins 3
2.1 Hook functions in a plugin class . 3
2.2 Standalone hook functions . 4

3 Writing external plugins (recommended and easy!) 5

4 repobee_plug Module Reference 7

5 Public API 9

6 Internal API 13
6.1 apimeta . 13
6.2 pluginmeta . 17
6.3 containers . 17
6.4 corehooks . 18
6.5 exthooks . 19
6.6 exception . 21
6.7 name . 21
6.8 serialize . 22

7 Indices and tables 23

Python Module Index 25

Index 27

i

ii

CHAPTER 1

Plugin system overview

1.1 Conventions

For RepoBee to discover a plugin and its hooks, the following conventions need to be adhered to:

1. The PyPi package should be named repobee-<plugin>, where <plugin> is the name of the plugin.

2. The actual Python package (i.e. the directory in which the source files are located) should be called
repobee_<plugin>. In other words, replace the hyphen in the PyPi package name with an underscore.

3. The Python module that defines the plugin’s hooks/hook classes should be name <plugin>.py.

For an example plugin that follows these conventions, have a look at repobee-junit4. Granted that the plugin follows
these conventions and is installed, it can be loaded like any other RepoBee plugin (see Using Existing Plugins).

1.2 Hooks

There are two types of hooks in RepoBee: core hooks and extension hooks.

1.2.1 Core hooks

Core hooks provide core functionality for RepoBee, and always have a default implementation in repobee.ext.
defaults. Providing a different plugin implementation will override this behavior, thereby changing some core part
of RepoBee. In general, only one implementation of a core hook will run per invocation of RepoBee. All core hooks
are defined in repobee_plug.corehooks.

Important: Note that the default implementations in repobee.ext.defaults may simply be imported into the
module. They are not necessarily defined there.

1

https://github.com/repobee/repobee-junit4
https://repobee.readthedocs.io/en/stable/plugins.html#using-existing-plugins

{cookiecutter.app_name} Documentation, Release 0.10.0

1.2.2 Extension hooks

Extension hooks extend the functionality of RepoBee in various ways. Unlike the core hooks, there are no default
implementations of the extension hooks, and multiple implementations can be run on each invocation of RepoBee. All
extension hooks are defined in repobee_plug.exthooks.

2 Chapter 1. Plugin system overview

CHAPTER 2

Implementing hooks and writing internal plugins

Implementing a hook is fairly simple, and works the same way regardless of what type of hook it is (core or extension).
If you are working with your own fork of RepoBee, all you have to do is write a small module implementing some
hooks, and drop it into the repobee.ext sub-package (i.e. the in directory repobee/ext in the RepoBee repo).

There are two ways to implement hooks: as standalone functions or wrapped in a class. In the following two sec-
tions, we’ll implement the act_on_cloned_repo() extension hook using both techniques. Let’s call the plugin
exampleplug and make sure it adheres to the plugin conventions.

2.1 Hook functions in a plugin class

Wrapping hook implementations in a class inheriting from Plugin is the recommended way to write plugins for
RepoBee. The class does some checks to make sure that all public functions have hook function names, which comes
in handy if you are in the habit of misspelling stuff (aren’t we all?). Doing it this way, exampleplug.py would
look like this:

Listing 1: exampleplug.py

import pathlib
import os
from typing import Union

import repobee_plug as plug

PLUGIN_NAME = 'exampleplug'

class ExamplePlugin(plug.Plugin):
"""Example plugin that implements the act_on_cloned_repo hook."""

def act_on_cloned_repo(
self, path: Union[str, pathlib.Path], api,

) -> plug.HookResult:
"""Do something with a cloned repo.

(continues on next page)

3

{cookiecutter.app_name} Documentation, Release 0.10.0

(continued from previous page)

Args:
path: Path to the student repo.
api: A platform API instance.

Returns:
a plug.HookResult specifying the outcome.

"""
return plug.HookResult(

hook=PLUGIN_NAME, status=plug.Status.WARNING, msg="This isn't quite done")

Dropping exampleplug.py into the repobee.ext package and running repobee -p exampleplug
clone [ADDITIONAL ARGS] should give some not-so-interesting output from the plugin.

The name of the class really doesn’t matter, it just needs to inherit from Plugin. The name of the module and hook
functions matter, though. The name of the module must be the plugin name, and the hook functions must have the
precise names of the hooks they implement. In fact, all public methods in a class deriving from Plugin must have
names of hook functions, or the class will fail to be created. You can see that the hook returns a HookResult. This
is used for reporting the results in RepoBee, and is entirely optional (not all hooks support it, though). Do note that if
None is returned instead, RepoBee will not report anything for the hook. It is recommended that hooks that can return
HookResult do. For a comprehensive example of an internal plugin implemented with a class, see the built-in javac
plugin.

2.2 Standalone hook functions

Using standalone hook functions is recommended only if you don’t want the safety net provided by the Plugin
metaclass. It is fairly straightforward: simply mark a function with the repobee_plug.repobee_hook decora-
tor. With this approach, exampleplug.py would look like this:

Listing 2: exampleplug.py

import pathlib
import os
from typing import Union

import repobee_plug as plug

PLUGIN_NAME = 'exampleplug'

@plug.repobee_hook
def act_on_cloned_repo(path: Union[str, pathlib.Path]) -> plug.HookResult:

"""Do something with a cloned repo.

Args:
path: Path to the student repo.

Returns:
a plug.HookResult specifying the outcome.

"""
return plug.HookResult(

hook=PLUGIN_NAME, status=plug.Status.WARNING, msg="This isn't quite done")

Again, dropping exampleplug.py into the repobee.ext package and running repobee -p exampleplug
clone [ADDITIONAL ARGS] should give some not-so-interesting output from the plugin. For a more practical
example of a plugin implemented using only a hook function, see the built-in pylint plugin.

4 Chapter 2. Implementing hooks and writing internal plugins

https://github.com/repobee/repobee/blob/master/repobee/ext/javac.py
https://github.com/repobee/repobee/blob/master/repobee/ext/javac.py
https://github.com/repobee/repobee/blob/master/repobee/ext/pylint.py

CHAPTER 3

Writing external plugins (recommended and easy!)

Writing an external plugin is really easy using the repobee-plugin-cookiecutter template. First of all, you
need to install cookiecutter. It’s on PyPi and installs just the same as repobee with pip install
cookiecutter (with whatever flags you like to use). Now, running python3 -m cookiecutter
gh:repobee/repobee-plugin-cookiecutter will give you some prompts to answer. If you want to create
a plugin called exampleplug, it looks something like this:

$ python3 -m cookiecutter gh:repobee/repobee-plugin-cookiecutter
author []: Your Name
email []: email@address.com
github_username []: your_github_username
plugin_name []: exampleplug
short_description []: An example plugin!

This will result in a directory called repobee-exampleplug, containing a fully functioning (albeit quite useless)
external plugin. If you do cd exampleplug and then run pip install -e ., you will install the plugin lo-
cally. You can then use it like any of the built-in plugins, as described in Using Existing Plugins. To actually implement
the behavior that you want, edit the file repobee-exampleplug/repobee_exampleplug/exampleplug.
py to implement the hooks you want.

5

https://github.com/repobee/repobee-plugin-cookiecutter
https://github.com/audreyr/cookiecutter-pypackage
https://repobee.readthedocs.io/en/latest/plugins.html#using-existing-plugins

{cookiecutter.app_name} Documentation, Release 0.10.0

6 Chapter 3. Writing external plugins (recommended and easy!)

CHAPTER 4

repobee_plug Module Reference

7

{cookiecutter.app_name} Documentation, Release 0.10.0

8 Chapter 4. repobee_plug Module Reference

CHAPTER 5

Public API

The public API of repobee_plug is what’s intended to be used directly in plugins.

class repobee_plug.Plugin
Base class for plugin classes. For plugin classes to be picked up by repobee, they must inherit from this class.

Public methods must be hook methods, i.e. implement the specification of one of the hooks defined in
PeerReviewHook or CloneHook. If there are any other public methods, an error is raised on class cre-
ation. As long as the method has the correct name, it will be recognized as a hook method.

The signature of the method is not checked until the hook is registered by the repobee_plug.manager (an
instance of pluggy.manager.PluginManager). Therefore, when testing a plugin, it is a good idea to
include a test where it is registered with the manager to ensure that it has the correct signatures.

Private methods (i.e. methods prefixed with _) carry no such restrictions.

class repobee_plug.HookResult
Container for storing results from hooks.

class repobee_plug.Status
Status codes enum.

class repobee_plug.ExtensionParser
An ArgumentParser specialized for RepoBee extension commands.

class repobee_plug.ExtensionCommand
Class defining an extension command for the RepoBee CLI.

class repobee_plug.ReviewAllocation(review_team, reviewed_team)

review_team
Alias for field number 0

reviewed_team
Alias for field number 1

class repobee_plug.Review(repo, done)

9

{cookiecutter.app_name} Documentation, Release 0.10.0

done
Alias for field number 1

repo
Alias for field number 0

class repobee_plug.Team
Wrapper class for a Team API object.

class repobee_plug.TeamPermission
Enum specifying team permissions on creating teams. On GitHub, for example, this can be e.g. push or pull.

class repobee_plug.Issue
Wrapper class for an Issue API object.

static from_dict(asdict)
Take a dictionary produced by Issue.to_dict and reconstruct the corresponding instance. The
implementation field is lost in a to_dict -> from_dict roundtrip.

Return type Issue

to_dict()
Return a dictionary representation of this namedtuple, without the implementation field.

class repobee_plug.Repo
Wrapper class for a Repo API object.

class repobee_plug.Issue
Wrapper class for an Issue API object.

static from_dict(asdict)
Take a dictionary produced by Issue.to_dict and reconstruct the corresponding instance. The
implementation field is lost in a to_dict -> from_dict roundtrip.

Return type Issue

to_dict()
Return a dictionary representation of this namedtuple, without the implementation field.

class repobee_plug.IssueState
Enum specifying a possible issue state.

class repobee_plug.API(base_url, token, org_name, user)
API base class that all API implementations should inherit from. This class functions similarly to an abstract
base class, but with a few key distinctions that affect the inheriting class.

1. Public methods must override one of the public methods of APISpec. If an inheriting class defines any
other public method, an APIError is raised when the class is defined.

2. All public methods in APISpec have a default implementation that simply raise a
NotImplementedError. There is no requirement to implement any of them.

exception repobee_plug.ExtensionCommandError
Raise when an :py:class:~repobee_plug.containers.ExtensionCommand: is incorrectly defined.

exception repobee_plug.HookNameError
Raise when a public method in a class that inherits from Plugin does not have a hook name.

exception repobee_plug.PlugError
Base class for all repobee_plug exceptions.

repobee_plug.json_to_result_mapping(json_string)
Deserialize a JSON string to a mapping repo_name: str -> hook_results:
List[HookResult]

10 Chapter 5. Public API

https://docs.python.org/3/library/exceptions.html#NotImplementedError

{cookiecutter.app_name} Documentation, Release 0.10.0

Return type Mapping[str, List[HookResult]]

repobee_plug.result_mapping_to_json(result_mapping)
Serialize a result mapping repo_name: str -> hook_results: List[HookResult] to JSON.

Return type str

class repobee_plug.BaseParser
Enumeration of base parsers that an extension command can request.

repobee_plug.generate_repo_name(team_name, master_repo_name)
Construct a repo name for a team.

Parameters

• team_name (str) – Name of the associated team.

• master_repo_name (str) – Name of the template repository.

Return type str

repobee_plug.generate_repo_names(team_names, master_repo_names)
Construct all combinations of generate_repo_name(team_name, master_repo_name) for the provided team
names and master repo names.

Parameters

• team_names (Iterable[str]) – One or more names of teams.

• master_repo_names (Iterable[str]) – One or more names of master repositories.

Return type Iterable[str]

Returns a list of repo names for all combinations of team and master repo.

repobee_plug.generate_review_team_name(student, master_repo_name)
Generate a review team name.

Parameters

• student (str) – A student username.

• master_repo_name (str) – Name of a master repository.

Return type str

Returns a review team name for the student repo associated with this master repo and student.

11

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

{cookiecutter.app_name} Documentation, Release 0.10.0

12 Chapter 5. Public API

CHAPTER 6

Internal API

The internal API of repobee_plug should only be used internally.

6.1 apimeta

Metaclass for API implementations.

APIMeta defines the behavior required of platform API implementations, based on the methods in APISpec. With
platform API, we mean for example the GitHub REST API, and the GitLab REST API. The point is to introduce
another layer of indirection such that higher levels of RepoBee can use different platforms in a platform-independent
way. API is a convenience class so consumers don’t have to use the metaclass directly.

Any class implementing a platform API should derive from API. It will enforce that all public methods are one of
the method defined py APISpec, and give a default implementation (that just raises NotImplementedError) for any
unimplemented API methods.

class repobee_plug.apimeta.API(base_url, token, org_name, user)
API base class that all API implementations should inherit from. This class functions similarly to an abstract
base class, but with a few key distinctions that affect the inheriting class.

1. Public methods must override one of the public methods of APISpec. If an inheriting class defines any
other public method, an APIError is raised when the class is defined.

2. All public methods in APISpec have a default implementation that simply raise a
NotImplementedError. There is no requirement to implement any of them.

class repobee_plug.apimeta.APIMeta
Metaclass for an API implementation. All public methods must be a specified api method, but all api methods
do not need to be implemented.

class repobee_plug.apimeta.APIObject
Base wrapper class for platform API objects.

class repobee_plug.apimeta.APISpec(base_url, token, org_name, user)
Wrapper class for API method stubs.

13

https://docs.python.org/3/library/exceptions.html#NotImplementedError

{cookiecutter.app_name} Documentation, Release 0.10.0

Important: This class should not be inherited from directly, it serves only to document the behavior of a
platform API. Classes that implement this behavior should inherit from API.

add_repos_to_review_teams(team_to_repos, issue=None)
Add repos to review teams. For each repo, an issue is opened, and every user in the review team is assigned
to it. If no issue is specified, sensible defaults for title and body are used.

Parameters

• team_to_repos (Mapping[str, Iterable[str]]) – A mapping from a team name
to an iterable of repo names.

• issue (Optional[Issue]) – An optional Issue tuple to override the default issue.

Return type None

close_issue(title_regex, repo_names)
Close any issues in the given repos in the target organization, whose titles match the title_regex.

Parameters

• title_regex (str) – A regex to match against issue titles.

• repo_names (Iterable[str]) – Names of repositories to close issues in.

Return type None

create_repos(repos)
Create repos in the target organization according the those specced by the repos argument. Repos that
already exist are skipped.

Parameters repos (Iterable[Repo]) – Repos to be created.

Return type List[str]

Returns A list of urls to the repos specified by the repos argument, both those that were created
and those that already existed.

delete_teams(team_names)
Delete all teams in the target organizatoin that exactly match one of the provided team_names. Skip any
team name for which no match is found.

Parameters team_names (Iterable[str]) – A list of team names for teams to be deleted.

Return type None

ensure_teams_and_members(teams, permission=<TeamPermission.PUSH: ’push’>)
Ensure that the teams exist, and that their members are added to the teams.

Teams that do not exist are created, teams that already exist are fetched. Members that are not in their
teams are added, members that do not exist or are already in their teams are skipped.

Parameters

• teams (Iterable[Team]) – A list of teams specifying student groups.

• permission (TeamPermission) – The permission these teams (or members of them)
should be given in regards to associated repositories.

Return type List[Team]

Returns A list of Team API objects of the teams provided to the function, both those that were
created and those that already existed.

14 Chapter 6. Internal API

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.List

{cookiecutter.app_name} Documentation, Release 0.10.0

extract_repo_name(repo_url)
Extract a repo name from the provided url.

Parameters repo_url (str) – A URL to a repository.

Return type str

Returns The name of the repository corresponding to the url.

get_issues(repo_names, state=<IssueState.OPEN: ’open’>, title_regex=”)
Get all issues for the repos in repo_names an return a generator that yields (repo_name, issue generator)
tuples. Will by default only get open issues.

Parameters

• repo_names (Iterable[str]) – An iterable of repo names.

• state (IssueState) – Specifies the state of the issue.

• title_regex (str) – If specified, only issues matching this regex are

• Defaults to the empty string (returned.) –

Return type Generator[Tuple[str, Generator[Issue, None, None]], None, None]

Returns A generator that yields (repo_name, issue_generator) tuples.

get_repo_urls(master_repo_names, org_name=None, teams=None)
Get repo urls for all specified repo names in the organization. As checking if every single repo actually
exists takes a long time with a typical REST API, this function does not in general guarantee that the urls
returned actually correspond to existing repos.

If the org_name argument is supplied, urls are computed relative to that organization. If it is not supplied,
the target organization is used.

If the teams argument is supplied, student repo urls are computed instead of master repo urls.

Parameters

• master_repo_names (Iterable[str]) – A list of master repository names.

• org_name (Optional[str]) – Organization in which repos are expected. Defaults to
the target organization of the API instance.

• teams (Optional[List[Team]]) – A list of teams specifying student groups. Defaults
to None.

Return type List[str]

Returns a list of urls corresponding to the repo names.

get_review_progress(review_team_names, teams, title_regex)
Get the peer review progress for the specified review teams and student teams by checking which review
team members have opened issues in their assigned repos. Only issues matching the title regex will be
considered peer review issues. If a reviewer has opened an issue in the assigned repo with a title matching
the regex, the review will be considered done.

Note that reviews only count if the student is in the review team for that repo. Review teams must only
have one associated repo, or the repo is skipped.

Parameters

• review_team_names (Iterable[str]) – Names of review teams.

• teams (Iterable[Team]) – Team API objects specifying student groups.

6.1. apimeta 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable

{cookiecutter.app_name} Documentation, Release 0.10.0

• title_regex (str) – If an issue title matches this regex, the issue is considered a
potential peer review issue.

Return type Mapping[str, List]

Returns a mapping (reviewer -> assigned_repos), where reviewer is a str and assigned_repos is
a _repobee.tuples.Review.

get_teams()
Get all teams related to the target organization.

Return type List[Team]

Returns A list of Team API object.

open_issue(title, body, repo_names)
Open the specified issue in all repos with the given names, in the target organization.

Parameters

• title (str) – Title of the issue.

• body (str) – Body of the issue.

• repo_names (Iterable[str]) – Names of repos to open the issue in.

Return type None

static verify_settings(user, org_name, base_url, token, master_org_name=None)
Verify the following (to the extent that is possible and makes sense for the specifi platform):

1. Base url is correct

2. The token has sufficient access privileges

3. Target organization (specifiend by org_name) exists

• If master_org_name is supplied, this is also checked to exist.

4. User is owner in organization (verify by getting

• If master_org_name is supplied, user is also checked to be an owner of it.

organization member list and checking roles)

Should raise an appropriate subclass of _repobee.exception.APIError when a problem is en-
countered.

Parameters

• user (str) – The username to try to fetch.

• org_name (str) – Name of the target organization.

• base_url (str) – A base url to a github API.

• token (str) – A secure OAUTH2 token.

• org_name – Name of the master organization.

Returns True if the connection is well formed.

Raises _repobee.exception.APIError

class repobee_plug.apimeta.Issue
Wrapper class for an Issue API object.

16 Chapter 6. Internal API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

{cookiecutter.app_name} Documentation, Release 0.10.0

static from_dict(asdict)
Take a dictionary produced by Issue.to_dict and reconstruct the corresponding instance. The
implementation field is lost in a to_dict -> from_dict roundtrip.

Return type Issue

to_dict()
Return a dictionary representation of this namedtuple, without the implementation field.

class repobee_plug.apimeta.IssueState
Enum specifying a possible issue state.

class repobee_plug.apimeta.Repo
Wrapper class for a Repo API object.

class repobee_plug.apimeta.Team
Wrapper class for a Team API object.

class repobee_plug.apimeta.TeamPermission
Enum specifying team permissions on creating teams. On GitHub, for example, this can be e.g. push or pull.

repobee_plug.apimeta.check_init_params(reference_params, compare_params)
Check that the compare __init__’s parameters are a subset of the reference class’s version.

repobee_plug.apimeta.check_parameters(reference, compare)
Check if the parameters match, one by one. Stop at the first diff and raise an exception for that parameter.

An exception is made for __init__, for which the compare may be a subset of the reference in no particular
order.

repobee_plug.apimeta.methods(attrdict)
Return all public methods and __init__ for some class.

repobee_plug.apimeta.parameters(function)
Extract parameter names and default arguments from a function.

6.2 pluginmeta

class repobee_plug.pluginmeta.Plugin
Base class for plugin classes. For plugin classes to be picked up by repobee, they must inherit from this class.

Public methods must be hook methods, i.e. implement the specification of one of the hooks defined in
PeerReviewHook or CloneHook. If there are any other public methods, an error is raised on class cre-
ation. As long as the method has the correct name, it will be recognized as a hook method.

The signature of the method is not checked until the hook is registered by the repobee_plug.manager (an
instance of pluggy.manager.PluginManager). Therefore, when testing a plugin, it is a good idea to
include a test where it is registered with the manager to ensure that it has the correct signatures.

Private methods (i.e. methods prefixed with _) carry no such restrictions.

6.3 containers

Container classes and enums.

class repobee_plug.containers.BaseParser
Enumeration of base parsers that an extension command can request.

6.2. pluginmeta 17

{cookiecutter.app_name} Documentation, Release 0.10.0

class repobee_plug.containers.ExtensionCommand
Class defining an extension command for the RepoBee CLI.

class repobee_plug.containers.ExtensionParser
An ArgumentParser specialized for RepoBee extension commands.

class repobee_plug.containers.HookResult
Container for storing results from hooks.

class repobee_plug.containers.Review(repo, done)

done
Alias for field number 1

repo
Alias for field number 0

class repobee_plug.containers.ReviewAllocation(review_team, reviewed_team)

review_team
Alias for field number 0

reviewed_team
Alias for field number 1

class repobee_plug.containers.Status
Status codes enum.

6.4 corehooks

Hookspecs for repobee core hooks.

Core hooks provide the basic functionality of repobee. These hooks all have default implementations, but are overrid-
den by any other implementation. All hooks in this module should have the firstresult=True option to the hookspec to
allow for this dynamic override.

class repobee_plug.corehooks.APIHook
Hooks related to platform APIs.

api_init_requires()
Return which of the arguments to apimeta.APISpec.__init__ that the given API requires. For example, the
GitHubAPI requires all, but the GitLabAPI does not require user.

Return type Tuple[str]

Returns Names of the required arguments.

get_api_class()
Return an API platform class. Must be a subclass of apimeta.API.

Returns An apimeta.API subclass.

class repobee_plug.corehooks.PeerReviewHook
Hook functions related to allocating peer reviews.

generate_review_allocations(teams, num_reviews)
Generate ReviewAllocation tuples from the provided teams, given that this concerns reviews for a
single master repo.

18 Chapter 6. Internal API

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

{cookiecutter.app_name} Documentation, Release 0.10.0

The provided teams of students should be treated as units. That is to say, if there are multiple members in a
team, they should always be assigned to the same review team. The best way to merge two teams team_a
and team_b into one review team is to simply do:

team_c = apimeta.Team(members=team_a.members + team_b.members)

This can be scaled to however many teams you would like to merge. As a practical example, if teams
team_a and team_b are to review team_c, then the following ReviewAllocation tuple, here
called allocation, should be contained in the returned list.

review_team = apimeta.Team(members=team_a.members + team_b.members)
allocation = containers.ReviewAllocation(

review_team=review_team,
reviewed_team=team_c,

)

Note: Respecting the num_reviews argument is optional: only do it if it makes sense. It’s good practice
to issue a warning if num_reviews is ignored, however.

Parameters

• team – A list of Team tuples.

• num_reviews (int) – Amount of reviews each student should perform (and conse-
quently amount of reviewers per repo)

Return type List[ReviewAllocation]

Returns A list of ReviewAllocation tuples.

6.5 exthooks

Hookspecs for repobee extension hooks.

Extension hooks add something to the functionality of repobee, but are not necessary for its operation. Currently, all
extension hooks are related to cloning repos.

class repobee_plug.exthooks.CloneHook
Hook functions related to cloning repos.

act_on_cloned_repo(path, api)
Do something with a cloned repo.

Parameters

• path (Union[str, Path]) – Path to the repo.

• api – An instance of repobee.github_api.GitHubAPI.

Return type Optional[HookResult]

Returns optionally returns a HookResult namedtuple for reporting the outcome of the hook.
May also return None, in which case no reporting will be performed for the hook.

clone_parser_hook(clone_parser)
Do something with the clone repos subparser before it is used used to parse CLI options. The typical task
is to add options to it.

6.5. exthooks 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional

{cookiecutter.app_name} Documentation, Release 0.10.0

Parameters clone_parser (ArgumentParser) – The clone subparser.

Return type None

config_hook(config_parser)
Hook into the config file parsing.

Parameters config – the config parser after config has been read.

Return type None

parse_args(args)
Get the raw args from the parser. Only called for the clone parser. The typical task is to fetch any values
from options added in clone_parser_hook().

Parameters args (Namespace) – The full namespace returned by argparse.
ArgumentParser.parse_args()

Return type None

class repobee_plug.exthooks.ExtensionCommandHook
Hooks related to extension commands.

create_extension_command()
Create an extension command to add to the RepoBee CLI. The command will be added as one of the
top-level subcommands of RepoBee. It should return an ExtensionCommand.

def command(args: argparse.Namespace, api: apimeta.API)

The command function will be called if the extension command is used on the command line.

Note that the RepoBeeExtensionParser class is just a thin wrapper around argparse.
ArgumentParser, and can be used in an identical manner. The following is an example definition
of this hook that adds a subcommand called example-command, that can be called with repobee
example-command.

def callback(args: argparse.Namespace, api: apimeta.API) -> None:
LOGGER.info("callback called with: {}, {}".format(args, api))

@plug.repobee_hook
def create_extension_command():

parser = plug.RepoBeeExtensionParser()
parser.add_argument("-b", "--bb", help="A useless argument")
return plug.ExtensionCommand(

parser=parser,
name="example-command",
help="An example command",
description="Description of an example command",
callback=callback,

)

Important: If you need to use the api, you set requires_api=True in the ExtensionCommand.
This will automatically add the options that the API requires to the CLI options of the subcommand, and
initialize the api and pass it in.

Return type ExtensionCommand

Returns A ExtensionCommand.

20 Chapter 6. Internal API

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

{cookiecutter.app_name} Documentation, Release 0.10.0

6.6 exception

Exceptions for repobee_plug.

exception repobee_plug.exception.APIImplementationError
Raise when an API is defined incorrectly.

exception repobee_plug.exception.ExtensionCommandError
Raise when an :py:class:~repobee_plug.containers.ExtensionCommand: is incorrectly defined.

exception repobee_plug.exception.HookNameError
Raise when a public method in a class that inherits from Plugin does not have a hook name.

exception repobee_plug.exception.PlugError
Base class for all repobee_plug exceptions.

6.7 name

Utility functions relating to RepoBee’s naming conventions.

repobee_plug.name.generate_repo_name(team_name, master_repo_name)
Construct a repo name for a team.

Parameters

• team_name (str) – Name of the associated team.

• master_repo_name (str) – Name of the template repository.

Return type str

repobee_plug.name.generate_repo_names(team_names, master_repo_names)
Construct all combinations of generate_repo_name(team_name, master_repo_name) for the provided team
names and master repo names.

Parameters

• team_names (Iterable[str]) – One or more names of teams.

• master_repo_names (Iterable[str]) – One or more names of master repositories.

Return type Iterable[str]

Returns a list of repo names for all combinations of team and master repo.

repobee_plug.name.generate_review_team_name(student, master_repo_name)
Generate a review team name.

Parameters

• student (str) – A student username.

• master_repo_name (str) – Name of a master repository.

Return type str

Returns a review team name for the student repo associated with this master repo and student.

6.6. exception 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

{cookiecutter.app_name} Documentation, Release 0.10.0

6.8 serialize

JSON serialization/deserialization functions.

repobee_plug.serialize.json_to_result_mapping(json_string)
Deserialize a JSON string to a mapping repo_name: str -> hook_results:
List[HookResult]

Return type Mapping[str, List[HookResult]]

repobee_plug.serialize.result_mapping_to_json(result_mapping)
Serialize a result mapping repo_name: str -> hook_results: List[HookResult] to JSON.

Return type str

22 Chapter 6. Internal API

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

23

{cookiecutter.app_name} Documentation, Release 0.10.0

24 Chapter 7. Indices and tables

Python Module Index

a
apimeta, 13

c
containers, 17
corehooks, 18

e
exception, 21
exthooks, 19

n
name, 21

r
repobee_plug, 9
repobee_plug.apimeta, 13
repobee_plug.containers, 17
repobee_plug.corehooks, 18
repobee_plug.exception, 21
repobee_plug.exthooks, 19
repobee_plug.name, 21
repobee_plug.pluginmeta, 17
repobee_plug.serialize, 22

s
serialize, 22

25

{cookiecutter.app_name} Documentation, Release 0.10.0

26 Python Module Index

Index

A
act_on_cloned_repo() (re-

pobee_plug.exthooks.CloneHook method),
19

add_repos_to_review_teams() (re-
pobee_plug.apimeta.APISpec method), 14

API (class in repobee_plug), 10
API (class in repobee_plug.apimeta), 13
api_init_requires() (re-

pobee_plug.corehooks.APIHook method),
18

APIHook (class in repobee_plug.corehooks), 18
APIImplementationError, 21
APIMeta (class in repobee_plug.apimeta), 13
apimeta (module), 13
APIObject (class in repobee_plug.apimeta), 13
APISpec (class in repobee_plug.apimeta), 13

B
BaseParser (class in repobee_plug), 11
BaseParser (class in repobee_plug.containers), 17

C
check_init_params() (in module re-

pobee_plug.apimeta), 17
check_parameters() (in module re-

pobee_plug.apimeta), 17
clone_parser_hook() (re-

pobee_plug.exthooks.CloneHook method),
19

CloneHook (class in repobee_plug.exthooks), 19
close_issue() (repobee_plug.apimeta.APISpec

method), 14
config_hook() (repobee_plug.exthooks.CloneHook

method), 20
containers (module), 17
corehooks (module), 18
create_extension_command() (re-

pobee_plug.exthooks.ExtensionCommandHook

method), 20
create_repos() (repobee_plug.apimeta.APISpec

method), 14

D
delete_teams() (repobee_plug.apimeta.APISpec

method), 14
done (repobee_plug.containers.Review attribute), 18
done (repobee_plug.Review attribute), 9

E
ensure_teams_and_members() (re-

pobee_plug.apimeta.APISpec method), 14
exception (module), 21
ExtensionCommand (class in repobee_plug), 9
ExtensionCommand (class in re-

pobee_plug.containers), 17
ExtensionCommandError, 10, 21
ExtensionCommandHook (class in re-

pobee_plug.exthooks), 20
ExtensionParser (class in repobee_plug), 9
ExtensionParser (class in re-

pobee_plug.containers), 18
exthooks (module), 19
extract_repo_name() (re-

pobee_plug.apimeta.APISpec method), 14

F
from_dict() (repobee_plug.apimeta.Issue static

method), 16
from_dict() (repobee_plug.Issue static method), 10

G
generate_repo_name() (in module repobee_plug),

11
generate_repo_name() (in module re-

pobee_plug.name), 21
generate_repo_names() (in module re-

pobee_plug), 11

27

{cookiecutter.app_name} Documentation, Release 0.10.0

generate_repo_names() (in module re-
pobee_plug.name), 21

generate_review_allocations() (re-
pobee_plug.corehooks.PeerReviewHook
method), 18

generate_review_team_name() (in module re-
pobee_plug), 11

generate_review_team_name() (in module re-
pobee_plug.name), 21

get_api_class() (re-
pobee_plug.corehooks.APIHook method),
18

get_issues() (repobee_plug.apimeta.APISpec
method), 15

get_repo_urls() (repobee_plug.apimeta.APISpec
method), 15

get_review_progress() (re-
pobee_plug.apimeta.APISpec method), 15

get_teams() (repobee_plug.apimeta.APISpec
method), 16

H
HookNameError, 10, 21
HookResult (class in repobee_plug), 9
HookResult (class in repobee_plug.containers), 18

I
Issue (class in repobee_plug), 10
Issue (class in repobee_plug.apimeta), 16
IssueState (class in repobee_plug), 10
IssueState (class in repobee_plug.apimeta), 17

J
json_to_result_mapping() (in module re-

pobee_plug), 10
json_to_result_mapping() (in module re-

pobee_plug.serialize), 22

M
methods() (in module repobee_plug.apimeta), 17

N
name (module), 21

O
open_issue() (repobee_plug.apimeta.APISpec

method), 16

P
parameters() (in module repobee_plug.apimeta), 17
parse_args() (repobee_plug.exthooks.CloneHook

method), 20

PeerReviewHook (class in repobee_plug.corehooks),
18

PlugError, 10, 21
Plugin (class in repobee_plug), 9
Plugin (class in repobee_plug.pluginmeta), 17

R
Repo (class in repobee_plug), 10
Repo (class in repobee_plug.apimeta), 17
repo (repobee_plug.containers.Review attribute), 18
repo (repobee_plug.Review attribute), 10
repobee_plug (module), 9
repobee_plug.apimeta (module), 13
repobee_plug.containers (module), 17
repobee_plug.corehooks (module), 18
repobee_plug.exception (module), 21
repobee_plug.exthooks (module), 19
repobee_plug.name (module), 21
repobee_plug.pluginmeta (module), 17
repobee_plug.serialize (module), 22
result_mapping_to_json() (in module re-

pobee_plug), 11
result_mapping_to_json() (in module re-

pobee_plug.serialize), 22
Review (class in repobee_plug), 9
Review (class in repobee_plug.containers), 18
review_team (repobee_plug.containers.ReviewAllocation

attribute), 18
review_team (repobee_plug.ReviewAllocation at-

tribute), 9
ReviewAllocation (class in repobee_plug), 9
ReviewAllocation (class in re-

pobee_plug.containers), 18
reviewed_team (re-

pobee_plug.containers.ReviewAllocation
attribute), 18

reviewed_team (repobee_plug.ReviewAllocation at-
tribute), 9

S
serialize (module), 22
Status (class in repobee_plug), 9
Status (class in repobee_plug.containers), 18

T
Team (class in repobee_plug), 10
Team (class in repobee_plug.apimeta), 17
TeamPermission (class in repobee_plug), 10
TeamPermission (class in repobee_plug.apimeta), 17
to_dict() (repobee_plug.apimeta.Issue method), 17
to_dict() (repobee_plug.Issue method), 10

28 Index

{cookiecutter.app_name} Documentation, Release 0.10.0

V
verify_settings() (re-

pobee_plug.apimeta.APISpec static method),
16

Index 29

	Plugin system overview
	Conventions
	Hooks

	Implementing hooks and writing internal plugins
	Hook functions in a plugin class
	Standalone hook functions

	Writing external plugins (recommended and easy!)
	repobee_plug Module Reference
	Public API
	Internal API
	apimeta
	pluginmeta
	containers
	corehooks
	exthooks
	exception
	name
	serialize

	Indices and tables
	Python Module Index
	Index

